ESCALAS TERMOMÉTRICAS
Se toman por acuerdo como puntos fijos el punto de fusión del hielo y el punto de ebullición del agua. Una escala termométrica vendrá definida por los valores de temperatura asignados a los dos puntos, aceptando una variación lineal de la magnitud termométrica con la temperatura.
ESCALA CELSIUS O CENTIGRADA
El grado Celsius, (símbolo ℃, °C en texto plano), es la unidad creada por Anders Celsius en 1742 para su escala de temperatura.
El grado Celsius pertenece al Sistema Internacional de Unidades, con carácter de unidad accesoria, a diferencia del kelvin que es la unidad básica de temperatura en dicho sistema.
Celsius definió su escala en 1742 considerando las temperaturas de congelación y ebullición del agua, asignándoles originalmente los valores 100 °C y 0 °C respectivamente (de manera que más caliente resultaba en una menor temperatura); fue Linneo quien invirtió ambos puntos un par de años más tarde. El método propuesto, al igual que el utilizado en 1724 para el grado Fahrenheit y el Grado Rømer de 1701, tenía la ventaja de basarse en las propiedades físicas de los materiales. William Thomson (luego Lord Kelvin) definió en 1848 su escala absoluta de temperatura en términos del grado Celsius. En la actualidad el grado Celsius se define a partir del kelvin del siguiente modo:
Los intervalos de temperatura expresados en °C y en kelvins tienen el mismo valor.
La escala de Celsius es muy utilizada para expresar las temperaturas de uso cotidiano, desde la temperatura del aire a la de un sin fín de dispositivos domésticos (hornos, freidoras, agua caliente, refrigeración, etc.). También se la utiliza en trabajos científicos y tecnológicos, aunque en muchos casos resulta obligada la utilización de la escala de Kelvin.
ESCALA KELVIN
El kelvin (antes llamado grado Kelvin), simbolizado como K, es la unidad de temperatura de la escala creada por William Thomson, Lord Kelvin, en el año 1848, sobre la base del grado Celsius, estableciendo el punto cero en el cero absoluto (−273,15 °C) y conservando la misma dimensión. Lord Kelvin, a sus 24 años introdujo la escala de temperatura termodinámica, y la unidad fue nombrada en su honor.
Actualmente, su nombre no es el de "grados kelvin", sino simplemente "kelvin". Coincidiendo el incremento en un grado Celsius con el de un kelvin, su importancia radica en el 0 de la escala: la temperatura de 0 K es denominada 'cero absoluto' y corresponde al punto en el que las moléculas y átomos de un sistema tienen la mínima energía térmica posible. Ningún sistema macroscópico puede tener una temperatura inferior. A la temperatura medida en kelvin se le llama "temperatura absoluta", y es la escala de temperaturas que se usa en ciencia, especialmente en trabajos de física o química.
También en iluminación de vídeo y cine se utilizan los kelvin como referencia de la temperatura de color. Cuando un cuerpo negro es calentado emitirá un tipo de luz según la temperatura a la que se encuentra. Por ejemplo, 1.600 K es la temperatura correspondiente a la salida o puesta del sol.
ESCALA FARENHEIT
El grado Fahrenheit (representado como °F) es una escala de temperatura propuesta por Daniel Gabriel Fahrenheit en 1714. La escala establece como las temperaturas de congelación y evaporación del agua, 32 °F y 212 °F, respectivamente. El método de definición es similar al utilizado para el grado Celsius (°C).
CALOR
El calor es la transferencia de energía entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintas temperaturas. Este flujo siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia de calor hasta que ambos cuerpos se encuentren en equilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).
La energía puede ser transferida por diferentes mecanismos, entre los que cabe reseñar la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado.
La energía que puede intercambiar un cuerpo con su entorno depende del tipo de transformación que se efectúe sobre ese cuerpo y por tanto depende del camino. Los cuerpos no tienen calor, sino energía interna. El calor es parte de dicha energía interna (energía calorífica) transferida de un sistema a otro, lo que sucede con la condición de que estén a diferente temperatura.
La energía existe en varias formas. En este caso nos enfocamos en el calor, que es la forma de la energía que se puede transferir de un sistema a otro como resultado de la diferencia de temperatura.
ENERGÍA
El término energía (del griego ἐνέργεια/energeia, actividad, operación; ἐνεργóς/energos=fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento. En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla, y luego darle un uso industrial o económico.
TEMPERATURA
La temperatura es una magnitud referida a las nociones comunes de caliente o frío. Por lo general, un objeto más "caliente" que otro puede considerarse que tiene una temperatura mayor, y si es frío, se considera que tiene una temperatura menor. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como "energía sensible", que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía sensible de un sistema, se observa que éste se encuentra más "caliente"; es decir, que su temperatura es mayor.
En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).
Dicho lo anterior, se puede definir la temperatura como la cuantificación de la actividad molecular de la materia.
El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.
Multitud de propiedades fisicoquímicas de los materiales o las sustancias varían en función de la temperatura a la que se encuentren, como por ejemplo su estado (sólido, líquido, gaseoso, plasma), su volumen, la solubilidad, la presión de vapor, su color o la conductividad eléctrica. Así mismo es uno de los factores que influyen en la velocidad a la que tienen lugar las reacciones químicas.
La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor "cero kelvin" (0 K) al "cero absoluto", y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius (antes llamada centígrada); y, en mucha menor medida, y prácticamente sólo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y sólo en algunos campos de la ingeniería.
EQUILIBRIO TÉRMICO
Para poder dar una definición más precisa del concepto de equilibrio térmico desde un punto de vista termodinámico es necesario definir algunos conceptos. Dos sistemas que están en contacto mecánico directo o separados mediante una superficie que permite la transferencia de calor lo que se conoce como superficie diatérmica, se dice que están en contacto térmico.
Consideremos entonces dos sistemas en contacto térmico, dispuestos de tal forma que no puedan mezclarse o reaccionar químicamente. Consideremos además que estos sistemas están colocados en el interior de un recinto donde no es posible que intercambien calor con el exterior ni existan acciones desde el exterior capaces de ejercer trabajo sobre ellos. La experiencia indica que al cabo de un tiempo estos sistemas alcanzan un estado de equilibrio termodinámico que se denominará estado de equilibrio térmico recíproco o simplemente de equilibrio térmico.
El concepto de equilibrio térmico puede extenderse para hablar de un sistema o cuerpo en equilibrio térmico. Cuando dos porciones cuales sean de un sistema se encuentran en equilibrio térmico se dice que el sistema mismo está en equilibrio térmico o que es térmica mente homogéneo.
RELACIÓN ENTRE CALOR Y ENERGÍA
El calor representa la cantidad de energía que un cuerpo transfiere a otro como consecuencia de una diferencia de temperatura entre ambos. El tipo de energía que se pone en juego en los fenómenos caloríficos se denomina energía térmica. El carácter energético del calor lleva consigo la posibilidad de transformarlo en trabajo mecánico. Sin embargo, la naturaleza impone ciertas limitaciones a este tipo de conversión, lo cual hace que sólo una fracción del calor disponible sea aprovechable en forma de trabajo útil.
ESCALAS DE CALOR
Las escalas de medición de la temperatura se dividen fundamentalmente en dos tipos, las relativas y las absolutas. Los valores que puede adoptar la temperatura en cualquier escala de medición, no tienen un nivel máximo, sino un nivel mínimo: el cero absoluto. Mientras que las escalas absolutas se basan en el cero absoluto, las relativas tienen otras formas de definirse.
UNIDADES DERIVADAS DEL SI
Grado Celsius (°C). Para establecer una base de medida de la temperatura Anders Celsius utilizó los puntos de fusión y ebullición del agua. Se considera que una mezcla de hielo y agua que se encuentra en equilibrio con aire saturado a 1 atm está en el punto de fusión. Una mezcla de agua y vapor de agua (sin aire) en equilibrio a 1 atm de presión se considera que está en el punto de ebullición. Celsius dividió el intervalo de temperatura que existe entre éstos dos puntos en 100 partes iguales a las que llamó grados centígrados °C.
Grado Fahrenheit (°F). Toma divisiones entre el punto de congelación de una disolución de cloruro amónico (a la que le asigna valor cero) y la temperatura normal corporal humana (a la que le asigna valor 100). Es una unidad típicamente usada en los Estados Unidos; erróneamente, se asocia también a otros países anglosajones como el Reino Unido o Irlanda, que usan la escala Celsius.
Grado Réaumur (°Ré, °Re, °R). Usado para procesos industriales específicos, como el del almíbar.
ABSOLUTAS
Las escalas que asignan los valores de la temperatura en dos puntos diferentes se conocen como escalas a dos puntos. Sin embargo en el estudio de la termodinámica es necesario tener una escala de medición que no dependa de las propiedades de las sustancias. Las escalas de éste tipo se conocen como escalas absolutas o escalas de temperatura termodinámicas.
Sistema Internacional de Unidades (SI)
Kelvin (K) El Kelvin es la unidad de medida del SI. La escala Kelvin absoluta es parte del cero absoluto y define la magnitud de sus unidades, de tal forma que el punto triple del agua es exactamente a 273,16 K.
ESTADOS DE AGREGACIÓN DE LA MATERIA
En física y química se observa que, para cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.
Estados de agregación, todos con propiedades y características diferentes
LEY DE CONSERVACIÓN DE LA ENERGÍA
La ley de la conservación de la energía constituye el primer principio de la termodinámica y afirma que la cantidad total de energía en cualquier sistema aislado (sin interacción con ningún otro sistema) permanece invariable con el tiempo, aunque dicha energía puede transformarse en otra forma de energía. En resumen, la ley de la conservación de la energía afirma que la energía no puede crearse ni destruirse, sólo se puede cambiar de una forma a otra, por ejemplo, cuando la energía eléctrica se transforma en energía calorífica en un calefactor. Dicho de otra forma: La energía puede transformarse de una forma a otra o transferirse de un cuerpo a otro, pero en su conjunto permanece estable (o constante).
UNIDADES DE CALOR
El calor es una forma de energía llamada energía térmica o energía calorífica. Por lo tanto, las unidades ´para medir el calor son las mismas del trabajo mecánico .
Kilocaloría: Es la cantidad de calor que debe extraerse o transferirse a 1 kilogramo de agua para cambiar su temperatura en 1º C. Se abrevia kcal.
Caloría: Es la cantidad de calor aplicado a un gramo de agua para elevar su temperatura 1° C.
BTU:Es la cantidad de calor qplicada a una libra (454 g) de agua para que se eleve su temperatura a 1° F.
En el sistema Internacional: El calor se mide en joules, 1 J=Nm, en el sistema de en erg; 1 erg= Dcm.
CAPACIDAD CALORÍFICA
La capacidad calorífica o capacidad térmica de un cuerpo es el cociente entre la cantidad de energía calorífica transferida a un cuerpo o sistema en un proceso cualquiera y el cambio de temperatura que experimenta. En una forma más rigurosa, es la energía necesaria para aumentar la temperatura de una determinada sustancia en una unidad de temperatura.1 Indica la mayor o menor dificultad que presenta dicho cuerpo para experimentar cambios de temperatura bajo el suministro de calor. Puede interpretarse como una medida de inercia térmica.
La capacidad calorífica se puede expresar como la cantidad de calor requerida para elevar en 1ºC, la temperatura de una determinada cantidad de sustancia. Cuanto mayor sea la capacidad calorífica de una sustancia, mayor será la cantidad de calor entregada a ella para subir su temperatura. Por ejemplo, no es lo mismo calentar el agua de un vaso que el agua de toda una piscina: requerimos mayor calor para calentar el agua de toda una piscina puesto que su capacidad calorífica es mucho mayor.
La capacidad calorífica (C) (propiedad extensiva), se expresa como "calor" sobre "grados centígrados" y, por tanto, tiene las siguientes unidades:
El calor específico es una propiedad intensiva, no depende de la materia, y es un valor fijo para cada sustancia. Así, el agua tiene un valor fijo de calor específico, el cual debemos entenderlo como la cantidad de calor que puede absorber una sustancia: cuanto mayor sea el calor específico, mayor cantidad de calor podrá absorber esa sustancia sin calentarse significativamente.
DILATACIÓN
La dilatación de los cuerpos: Los cuerpos que se encuentran en movimiento o que reciben calor aumentan las vibraciones de sus moléculas. Esto trae como consecuencia que exista un incremento en sus volúmenes, lo que se conoce como dilatación térmica.
La dilatación es un factor importante que se considera para la planificación de proyectos de ingeniería, como la construcción de puentes o edificios, entre otros. Por esta razón, es común ver en pistas y veredas unas pequeñas separaciones para evitar que se produzcan rompimientos cuando ganen calor y se dilaten.
La dilatación es el aumento de las dimensiones de los cuerpos, la cual depende del material del que están formados. Así, por ejemplo, el oro se dilata mucho más rápido que el vidrio. La dilatación puede ser lineal, superficial o cúbica.
DILATACIÓN DE LOS CUERPOS
La dilatación en los sólidos es menos apreciable a simple vista que la de los líquidos. Los sólidos se dilatan en sus tres dimensiones; sin embargo, la forma del cuerpo es determinante para que se dilate más en una dimensión que en otra.
Los cuerpos largos – un alambre, por ejemplo – se dilatan principalmente en longitud y en las demás dimensiones la dilatación es prácticamente inapreciable. Por lo tanto, estos cuerpos tienen dilatación lineal.
Los cuerpos de superficies delgadas – una chapa metálica, por ejemplo – se dilatan a lo largo y a lo ancho, de ahí que su dilatación sea superficial.
En los demás sólidos, la dilatación es en sus tres dimensiones, por lo que su dilatación es cúbica.La dilatación de los cuerpos sólidos tienen múltiples aplicaciones prácticas. Por ejemplo, en los pisos de patios y terrazas y en las veredas se dejan entre las losetas pequeñas separaciones que permitan su dilatación o contracción en los días de mucho calor o mucho frío, respectivamente. Asimismo, entre los rieles de un tren se dejan espacios que les permiten dilatarse sin romperse.
CLASIFICACIÓN DE DILATACIÓN
Dilatación de los líquidos
Los líquidos sufren siempre dilatación cúbica; es decir, en todo su volumen, ya que no existen barras o superficies líquidas. Los líquidos se dilatan más que los sólidos y, además, más de prisa. La aplicación más importante de la dilatación de los líquidos es el termómetro.
El agua es una excepción importante de la dilatación de los líquidos. Es decir, el agua es un líquido que no se comporta como los demás. Cuando se calienta se dilata, es decir, aumenta su volumen, pero cuando su temperatura disminuye desde los 4° a los 0 °, se dilata en lugar de contraerse. Por eso no hay que poner a congelar recipientes cerrados llenos de agua, por que se rompen.
Este fenómeno es muy importante para la vida de las especies marinas en las regiones frías de nuestro planeta. Cuando la temperatura ambiental desciende mucho, parte del agua de lagos y ríos se congela y aumenta su volumen. Los hielos, que pesan menos que el agua líquida, permanecen flotando en la superficie. Esta capa sirve como aislante térmico, impidiendo que el agua que está mas abajo pierda calor y se congele.
CALOR ESPECÍFICO
Es la cantidad de calor que es necesario suministrarle a la unidad de masa de una sustancia para elevar su temperatura en 1°C.
Cada sustancia tiene su propio valor de calor específico, por lo que cada uno requerirá distintas cantidades de calor para hacer que una misma cantidad de masa eleve su temperatura en 1°C.
Para comprender esta definición, el significado del calor específico, se lo puede considerar como la "inercia térmica", recordando que el término de inercia se usa en la mecánica para denotar la resistencia que opone un objeto a los cambios en su estado de movimiento. De igual modo, el calor específico representa la inercia térmica porque denota la resistencia que opone una sustancia a los cambios de temperatura:
Ejemplo: Si se calientan masas iguales de agua y de aluminio, el aluminio se calienta mucho más rápido que el agua; y si se les interrumpe el suministro de calor al mismo tiempo, el aluminio se enfría más rápido que el agua. En este caso, el agua presenta una mayor cantidad de calor específico que el aluminio, ya que requiere más calor para elevar su temperatura y se demora más tiempo en asimilar los cambios de temperatura (tiene más "inercia térmica").
FÓRMULA DEL CALOR ESPECÍFICO.
La cantidad de calor Q que es necesario darle a una masa m de una sustancia para elevar su temperatura de T1 a T2 esta dada por la fórmula:
De donde "ç" representa la constante de calor específico de la sustancia. Este valor es propio de cada material y se mide en: cal/(g*°C).
TRANSFERENCIA DE CALOR
La transmisión del calor de una región a otra se puede efectuar sólo por alguna de estas tres formas:
CONDUCCIÓN.
Transferencia de calor a través de un cuerpo o entre dos cuerpos en contacto, sin que se desplacen las moléculas de los mismos. Ocurre sólo en los materiales sólidos. Ejemplo: Una barra de metal cuyo extremo se lo acerca a una llama, permite que fluya calor hasta su extremo opuesto.
El desplazamiento de calor se realiza según la facilidad con lo que permita el material, de lo cual surge el concepto de Conductividad Térmica.
CONVECCIÓN.
Transferencia de calor entre dos partes de un cuerpo a causa del desplazamiento de sus moléculas. Ocurre sólo en los fluídos (líquidos y gases). El movimiento de las moléculas se origina por la diferencia de densidades que hay dentro de la sustancia, generando corrientes de convección desde las partes más calientes hacia las más frías en la masa del fluído. Ejemplo: Cuando se calienta un recipiente con agua, las moléculas del líquido que están en contacto con la zona caliente (llama) se mueven hacia la superficie donde se encuentran con el resto de moléculas más frías, haciendo que a su vez estas moléculas frías se desplacen hasta la zona de calor y comiencen el ciclo nuevamente. Este proceso dentro del líquido hace que el agua adquiera calor repetidamente, hasta alcanzar la temperatura suficiente de ebullición.
RADIACIÓN.
Transferencia de calor y energía de un cuerpo llamado foco a otro cuerpo distante, a través del VACÍO, es decir, sin la presencia de algún agente material o sustancia intermedia. Esta transferencia se logra gracias a que la energía se transporta por medio de Ondas Electromagnéticas las cuales pueden propagarse por el vacío sin ningún inconveniente. Ejemplo: Una bombilla emite luz y calor en forma de radiación. Esta radiación corresponde a: Ondas de Luz Visible (que nos permiten ver) y a las ondas infrarrojas (que nos dan la sensación de calor). Otras fuentes de luz como el Sol, aparte de las anteriores, también emite rayos X, microondas, ultravioleta, etc., las cuales no somos capaces de sentir, pero que sí lo pueden hacer aparatos e instrumentos apropiados.
DILATACIÓN EN LOS GASES
Los gases, al igual que los líquidos, se dilatan en todo su volumen, pero su dilatación es mayor que la de los líquidos.
En la naturaleza, la dilatación del aire permite su movimiento. Cuando el aire se calienta, se dilata y se hace más liviano que el aire frío. Por eso el aire caliente asciende, mientras que el aire frío baja.
CAMBIOS DE FASE
Es un hecho muy conocido que en la naturaleza las sustancias se presentan en tres fases diferentes (fase sólido, fase líquido y fase gaseoso).La presión y la temperatura que se aplica a una sustancia determinará en qué fase puedan presentarse , así pues el hierro que en las condiciones ambientales se halla en estado sólido , se podrá volver líquido conforme eleve su temperatura; el agua que normalmente es líquida , podrá convertirse en gas por elevación de temperatura, o por reducción de la presión a la que está sometida .
Cuando una sustancia pasa de una fase a otra, decimos que sufre un cambio de fase o cambio de estado físico. La aplicación o extracción de continua de calor a un sólido o a un líquido da como resultado un cambio de estado.
Fusión: Es el cambio del estado sólido al líquido por aumento de calor.
Vaporización: Es el paso del estado líquido al gaseoso por aumento de calor.
Condensación: Es el paso del estado gaseoso al estado líquido al sustraer calor.
Solidificación: Es el paso del estado líquido al sólido al sustraer calor.
Sublimación: Es el paso del estado sólido al gaseoso sin pasar por el estado líquido, o viceversa por aumento de calor o disminución de calor.
Punto de Fusión: Es la temperatura a la cual se encuentra el equilibrio de fases sólido-líquido, es decir la materia pasa de estado sólido a estado líquido, se funde. Cabe destacar que el cambio de fase ocurre a temperatura constante. El punto de fusión es una propiedad intensiva.
Es la temperatura a la cual una sustancia sólida comienza a licuarse, estando en contacto íntimo con el estado líquido resultante que se encontrará en equilibrio a la misma temperatura .Cada sustancia funde y solidifica a la misma temperatura llamada Punto de Fusión.
EL punto de fusión es una propiedad características de la materia pues independientemente de la cantidad de sustancia que se tenga, el punto de fusión será el mismo a una presión determinada. Para que un sólido pase al estado líquido necesita absorber la energía necesaria para destruir la unión entre sus moléculas , por lo tanto , mientras dura la fusión no aumenta la temperatura, aunque en el agua al incrementarse la presión disminuye su punto de fusión.
Punto de Ebullición: La definición formal de punto de ebullición es aquella temperatura en la cual la presión de vapor del líquido iguala a la presión de vapor del medio en el que se encuentra.1 Coloquialmente, se dice que es la temperatura a la cual la materia cambia del estado líquido al estado gaseoso. La temperatura de una sustancia o cuerpo depende de la energía cinética media de las moléculas. A temperaturas inferiores al punto de ebullición, sólo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar. Este incremento de energía constituye un intercambio de calor que da lugar al aumento de la entropía del sistema (tendencia al desorden de las partículas que componen su cuerpo).
CALOR LATENTE
El calor latente es la energía requerida por una cantidad de sustancia para cambiar de fase, de sólido a líquido (calor de fusión) o de líquido a gaseoso (calor de vaporización). Se debe tener en cuenta que esta energía en forma de calor se invierte para el cambio de fase y no para un aumento de la temperatura, la cantidad de calor necesario para cambiar de fase es de 80 cal/gC°
Desde antiguo se usaba la expresión calor latente para referirse al calor de fusión o de vaporización. Latente, en latín, quiere decir escondido, y se llamaba así porque, al no notarse un cambio de temperatura mientras se produce el cambio de fase (a pesar de añadir calor), éste se quedaba escondido. La idea proviene de la época en la que se creía que el calor era una sustancia fluida denominada calórica. Por el contrario, el calor que se aplica cuando la sustancia no cambia de fase y aumenta la temperatura, se llama calor sensible.
Cuando se aplica calor a un trozo de hielo, va subiendo su temperatura hasta que llega a 0 °C (temperatura de cambio de estado); a partir de ese momento, aunque se le siga aplicando calor, la temperatura no cambiará hasta que se haya fundido del todo. Esto se debe a que el calor se emplea en la fusión del hielo. Una vez fundido el hielo la temperatura volverá a subir hasta llegar a 100 °C; desde ese momento, la temperatura se mantendrá estable hasta que se evapore toda el agua.
CALOR LATENTE DE FUSIÓN
Para que un sólido pase al estado líquido debe absorber la energía necesaria a fin de destruir las uniones entre sus moléculas. Por lo tanto, mientras dura la fusión no aumenta la temperatura. Por ejemplo, para fundir el hielo o congelar el agua sin cambio en la temperatura, se requiere un intercambio de 80 calorías por gramo, o 80 kilocalorías por kilogramo.
El calor requerido para este cambio en el estado físico del agua sin que exista variación en la temperatura recibe el nombre de calor latente de fusión o simplemente calor de fusión del agua.
Esto significa que si sacamos de un congelador cuya temperatura es de –6° C un pedazo de hielo de masa igual a 100 gramos y lo ponemos a la intemperie, el calor existente en el ambiente elevará la temperatura del hielo, y al llegar a 0° C y seguir recibiendo calor se comenzará a fundir.
A partir de ese momento todo el calor recibido servirá para que la masa de hielo se transforme en agua líquida. Como requiere de 80 calorías por cada gramo (ver cuadro), necesitará recibir 8.000 calorías del ambiente para fundirse completamente. Cuando esto suceda, el agua se encontrará aún a 0° C y su temperatura se incrementará sólo si se continúa recibiendo calor, hasta igualar su temperatura con el ambiente.
Calor de fusión de cada sustancia
El calor de fusión es una propiedad característica de cada sustancia, pues según el material de que esté hecho el sólido requerirá cierta cantidad de calor para fundirse. Por definición: el calor latente de fusión de una sustancia es la cantidad de calor que requiera ésta para cambiar 1 gramo de sólido a 1 gramo de líquido sin variar su temperatura.
Los cálculos pertinentes se realizan utilizando las fórmulas:
Donde λf = calor latente de fusión en cal/gramo.
Q = calor suministrado en calorías.
m = masa de la sustancia en gramos.
En el cuadro siguiente se dan algunos valores del calor latente de fusión para diferentes sustancias.
Sustancia λf en cal/gr.
Agua 80
Hierro 6
Cobre 42
Plata 21
Platino 27
Oro 16
Mercurio 2,8
Plomo 5,9
Calor latente de solidificación
Como lo contrario de la fusión es la solidificación o congelación, la cantidad de calor requerida por una sustancia para fundirse, es la misma que cede cuando se solidifica.
Por lo tanto, con respecto a una sustancia el calor latente de fusión es igual al calor latente de solidificación o congelación.
Ejercicio 1
Calcular la cantidad de calor que se requiere para transformar 100 gramos de hielo que están a –15° C de temperatura en agua a 0° C.
Desarrollo
Para que el hielo eleve su temperatura de –15° C hasta el punto de fusión a 0° C, se necesita una cantidad de calor que se calcula con la ecuación
Q = m Ce ΔT.
Donde
Q = calor requerido (en calorías)
Ce = Calor específico (en cal/gº C)
ΔT = variación de temperatura o Tf – Ti (en grados C)
Q1 = 100 g x 0,50 cal/g° C x 15° C = 750 calorías.
Luego, para que el hielo se funda y se tenga agua a 0° C, se aplica la ecuación
Q = mλf (el calor latente de fusión para el agua, según el cuadro anterior, es 80 cal/g) entonces:
Q2 = 100 gr x 80 cal/gr = 8.000 cal
Así, el calor total requerido es:
Q1 + Q2 = 750 cal + 8.000 cal = 8.750 calorías.
CALOR LATENTE DE VAPORIZACIÓN
Calor latente de vaporización
A una presión determinada todo líquido calentado hierve a una temperatura fija que constituye su punto de ebullición. Este se mantiene constante independientemente del calor suministrado al líquido, pues si se le aplica mayor cantidad de calor, habrá mayor desprendimiento de burbujas sin cambio en la temperatura del mismo.
Cuando se produce la ebullición se forman abundantes burbujas en el seno del líquido, las cuales suben a la superficie desprendiendo vapor.
Si se continúa calentando un líquido en ebullición, la temperatura ya no sube, esto provoca la disminución de la cantidad del líquido y aumenta la de vapor.
Al medir la temperatura del líquido en ebullición y la del vapor se observa que ambos estados tienen la misma temperatura; es decir; coexisten en equilibrio termodinámico.
A presión normal (1 atm = 760 mm de Hg), el agua ebulle (hierve) y el vapor se condensa a 100° C, a esta temperatura se le da el nombre de punto de ebullición del agua. Si se desea que el agua pase de líquido a vapor o viceversa sin variar su temperatura, necesita un intercambio de 540 calorías por cada gramo. Este calor necesario para cambiar de estado sin variar de temperatura se llama calor latente de vaporización del agua o simplemente calor de vaporización.
Por definición el calor latente de vaporización de una sustancia es la cantidad de calor que requiere para cambiar 1 gramo de líquido en ebullición a 1 gramo de vapor, manteniendo constante su temperatura.
Los cálculos pertinentes se realizan utilizando las fórmulas:
Donde
λv = calor latente de vaporización en cal/g
Q = calor suministrado en calorías
m = masa de la sustancia en gramos.
Como lo contrario de la evaporación es la condensación, la cantidad de calor requerida por una sustancia para evaporarse es igual a la que cede cuando se condensa, por lo tanto, en ambos el calor latente de condensación es igual al calor latente de vaporización para dicha sustancia.
En el cuadro siguiente se dan valores del calor latente de vaporización de algunas sustancias.
Calor latente de vaporización de algunas sustancias
Sustancia λv en cal/gr
Agua 540
Nitrógeno 48
Helio 6
Aire 51
Mercurio 65
Alcohol etílico 204
Bromo 44
CALOR QUE ABSORBE Y CEDE UN CUERPO
Cuando un cuerpo caliente se pone en contacto con uno frío existe un intercambio de energía calorífica del cuerpo caliente al frío hasta que igualan su temperatura. En un intercambio de calor, la cantidad del mismo permanece constante pues el calor transmitido por uno o más objetos calientes será el que reciba uno o más objetos fríos. Esto da origen a la ley de intercambio de calor que dice: ³ en cualquier intercambio de efectuado el calor cedido es igual.
Mira el Calor cedido y absorbido, se refiere a cuando existen 2 cuerpos, pero con la condición de que uno de ellos tenga una temperatura mayor al otro. Calor cedido es el que el cuerpo de menor temperatura recibe del que tiene una temperatura mayor. El Calor absorbido es el que el cuerpo de mayor temperatura cedió al cuerpo de menor temperatura. Para no hacerlo tan complicado, El calor cedido es la diferencia de la temperatura inicial y la final del cuerpo que tenía en un INICIO la temperatura MAYOR. El calor absorbido es la diferencia entre la temperatura inicial y final del cuerpo con la menor temperatura inicial.
Un aspecto del calor que conviene resaltar es que los cuerpos no almacenan calor sino energía interna. El calor es por tanto la transferencia de parte de dicha energía interna de un sistema a otro, con la condición de que ambos estén a diferente temperatura. Sus unidades en el Sistema Internacional son los joules (J). La experiencia pone de manifiesto que la cantidad de calor tomada (o cedida) por un cuerpo es directamente proporcional a su masa y al aumento (o disminución) de temperatura que experimenta. La expresión matemática de esta relación es la ecuación calorimétrica.
NOTA: Realizar cuadro sinoptico y comparativo de los temas presentado.